本文出處:IB培訓(xùn) 發(fā)布時(shí)間:2020-07-29 14:41:05 字體大?。? A+ A-
代數(shù)與幾何是數(shù)學(xué)課程學(xué)習(xí)中最重要的兩大部分,在GRE數(shù)學(xué)考試中也有著比較多的涉及。今天A加未來(lái)小編就帶大家一起來(lái)解析一下GRE數(shù)學(xué)考試中幾何與代數(shù)部分的常見(jiàn)題型以及解題思路,一起來(lái)了解一下吧!
01、代數(shù)
1、指數(shù)運(yùn)算法則 Rules of Exponents
首先我們要熟練代數(shù)的運(yùn)算法則:
例題一:
Which of the following are equal to (1/560)-4 ?Indicate all correct answers.
通過(guò)指數(shù)的運(yùn)算規(guī)則可知:
(1/560)^-4=560^4
A:560^4*(560-1)/559=560^4
B:560^-10
C:70^4*8^4=560^4
D:560^8
所以答案為AD
2、函數(shù) Function
y=f(x)稱為一個(gè)函數(shù)
Domain定義域?yàn)楹瘮?shù)有定義的所有x值
Range值域?yàn)楹瘮?shù)所有可能的取值
例題二:
★b=b+2 and ub=(b^2+1)/b
QuantityA Quantity B
u(★3) ★(u3)
A.QuantityAis greater.
B.Quantity B is greater.
C.The two quantities are equal.
D.The relationship cannot be determined from the information given.
答案:B
先關(guān)注AB的區(qū)別,先算括號(hào)里,計(jì)算順序不同結(jié)果不同
u(★3)=u5=26/5=78/15
★(u3)=★(10/3)=16/3=80/15
u(★3)<★(u3)
3、應(yīng)用 Applications
3.1、工作問(wèn)題 work problem
工作量=工作效率ⅹ工作時(shí)間
A單獨(dú)需要a小時(shí)完成, B單獨(dú)需要b小時(shí)完成, A和B一起需要c小時(shí)完成:
1/a+1/b=1/c
例題三:
Working alone, pump A can empty a pool in 3 hours. Working alone, pump B can
empty the same pool in 2 hours. Working together, how many minutes will it take
pumpAand pump B to empty the pool?
A.72
B.75
C.84
D.96
E.108
答案:A
效率:PA=1/3;PB=1/2
A和B一起工作:1/3+1/2=1/t
那所需要的時(shí)間為72分鐘
3.2利息問(wèn)題 interest problem
1、單利
Interest can be computed in two basic ways. With simple annual interest(單利), the interest is computed on the principal only and is equal to (principal)*(interest rate)*time.
F(本金與利息之和)=P(本金)+P×i(利率)×n(計(jì)息期數(shù)) =P×(1+i×n)
2、復(fù)利
If interest is compounded(復(fù)利), then interest is computed on the principal as well as on any interest already earned.
F=P*(1+i)^n
例題四:
A certain money market account that had a balance of $48,000 during all of last
month earned $360 in interest for the month.At what simple annual interest rate did
the account earn interest last month?
答案E
月利率:i=360/48000*100%
年利率:I=12i=9%
02、幾何
1、三角形性質(zhì):
等邊三角形 equilateral triangle
直角三角形 right triangle
例題一:
QuantityA Quantity B
X y
A.QuantityAis greater.
B.Quantity B is greater.
C.The two quantities are equal.
D.The relationship cannot be determined from the information given.
答案B
13+x^2=25
11+y^2=25
2、四邊形性質(zhì)
平行四邊形 parallelogram
正方形 Square
3、圓 Circles
半徑r、圓周率π、直徑d、R大半徑、h高
圓的面積:πr^2
圓的周長(zhǎng):2πr
半圓的周長(zhǎng):πr+2r
圓環(huán)的面積:(R^-r^)π
圓柱的體積:πr^2h
圓柱的表面積:πr^2*2+πdh
圓環(huán)的體積:(R^2-r^2)πh
例題二:
Quantity A Quantity B
Area of semicircular region Area of triangular region ABC
A.QuantityAis greater.
B.Quantity B is greater.
C.The two quantities are equal.
D.The relationship cannot be determined from the information given.
答案:A
A,B,C都在圓周上,三角形ABC的面積比半圓面積小
4、坐標(biāo)幾何 Coordinate Geometry
1、兩點(diǎn)之間距離
設(shè)兩個(gè)點(diǎn)A、B以及坐標(biāo)分別為
、 ,則A和B兩點(diǎn)之間的距離為:
2、直線方程
一般式:Ax+By+C=0(A、B不同時(shí)為0)【適用于所有直線】
,
A1/A2=B1/B2≠C1/C2←→兩直線平行
A1/A2=B1/B2=C1/C2←→兩直線重合
橫截距a=-C/A
縱截距b=-C/B
例題三:
In the xy-coordinate system, the distance between points (2√3,?√2)and(5√3,3√2)
is approximately
A.4.1
B.5.9
C.6.4
D.7.7
E.8.1
答案D
用公式:√[(5√3-2√3)^2+(3√2+√2)^2]=√59≈7.7
本章來(lái)源:GRE
本章標(biāo)題:GRE數(shù)學(xué)考試代數(shù)與幾何常見(jiàn)題型解析
文本地址:http://iemv.cn/article_query/id/4640
了解更多:GRE數(shù)學(xué)考試 | GRE數(shù)學(xué) |
版權(quán)所有 轉(zhuǎn)載時(shí)請(qǐng)您以鏈接形式注明來(lái)源!