WhatisTrigonometry?
本文為全英敘述,可以充分引領(lǐng)你了解三角函數(shù)的前世今生,來龍去脈。在本文結(jié)尾處,附上三張三角函數(shù)公式表,幫助你自如地應(yīng)付A-Level數(shù)學(xué)考試。
Trigonometryisabranchofmathematicsthatstudiesrelationshipsbetweenthesidesandanglesoftriangles.Trigonometryisfoundallthroughoutgeometry,aseverystraight-sidedshapemaybebrokenintoasacollectionoftriangles.
Furtherstill,trigonometryhasastoundinglyintricaterelationshipstootherbranchesofmathematics,inparticularcomplexnumbers,infiniteseries,logarithmsandcalculus.
Thewordtrigonometryisa16th-centuryLatinderivativefromtheGreekwordsfortriangle(trigōnon)andmeasure(metron).ThoughthefieldemergedinGreeceduringthethirdcenturyB.C.,someofthemostimportantcontributions(suchasthesinefunction)camefromIndiainthefifthcenturyA.D.
BecauseearlytrigonometricworksofAncientGreecehavebeenlost,itisnotknownwhetherIndianscholarsdevelopedtrigonometryindependentlyorafterGreekinfluence.AccordingtoVictorKatzin“AHistoryofMathematics3rdEdition)”(Pearson,2008),trigonometrydevelopedprimarilyfromtheneedsofGreekandIndianastronomers.
Anexample:Heightofasailboatmast
Supposeyouneedtoknowtheheightofasailboatmast,butareunabletoclimbittomeasure.Ifthemastisperpendiculartothedeckandtopofthemastisriggedtothedeck,thenthemast,deckandriggingropeformarighttriangle.
Ifweknowhowfartheropeisriggedfromthemast,andtheslantatwhichtheropemeetsthedeck,thenallweneedtodeterminethemast’sheightistrigonometry.
Forthisdemonstration,weneedtoexamineacouplewaysofdescribing“slant.”Firstisslope,whichisaratiothatcompareshowmanyunitsalineincreasesvertically(itsrise)comparedtohowmanyunitsitincreaseshorizontally(itsrun).Slopeisthereforecalculatedasrisedividedbyrun.
Supposewemeasuretheriggingpointas30feet(9.1meters)fromthebaseofthemast(therun).Bymultiplyingtherunbytheslope,wewouldgettherise—themastheight.Unfortunately,wedon’tknowtheslope.Wecan,however,findtheangleoftheriggingrope,anduseittofindtheslope.
Anangleissomeportionofafullcircle,whichisdefinedashaving360degrees.Thisiseasilymeasuredwithaprotractor.Let’ssupposetheanglebetweentheriggingropeandthedeckis71/360ofacircle,or71degrees.
Wewanttheslope,butallwehaveistheangle.Whatweneedisarelationshipthatrelatesthetwo.Thisrelationshipisknownasthe“tangentfunction,”writtenastan(x).Thetangentofananglegivesitsslope.Forourdemo,theequationis:tan(71°)=2.90.(We'llexplainhowwegotthatanswerlater.)
Thismeanstheslopeofourriggingropeis2.90.Sincetheriggingpointis30feetfromthebaseofthemast,themastmustbe2.90×30feet,or87feettall.(Itworksthesameinthemetricsystem:2.90x9.1meters=26.4meters.)
▎Sine,cosineandtangent.
Dependingonwhatisknownaboutvarioussidelengthsandanglesofarighttriangle,therearetwoothertrigonometricfunctionsthatmaybemoreuseful:the“sinefunction”writtenassin(x),andthe“cosinefunction”writtenascos(x).
Beforeweexplainthosefunctions,someadditionalterminologyisneeded.Sidesandanglesthattoucharedescribedasadjacent.Everysidehastwoadjacentangles.Sidesandanglesthatdon’ttoucharedescribedasopposite.Forarighttriangle,thesideoppositetotherightangleiscalledthehypotenuse(fromGreekfor“stretchingunder”).Thetworemainingsidesarecalledlegs.
Usuallyweareinterested(asintheexampleabove)inanangleotherthantherightangle.Whatwecalled“rise”intheaboveexampleistakenaslengthoftheoppositelegtotheangleofinterest;likewise,the“run”istakenasthelengthoftheadjacentleg.Whenappliedtoananglemeasure,thethreetrigonometricfunctionsproducethevariouscombinationsofratiosofsidelengths.
▎Inotherwords:
◆ThetangentofangleA=thelengthoftheoppositesidedividedbythelengthoftheadjacentside
◆ThesineofangleA=thelengthoftheoppositesidedividedbythelengthofthehypotenuse
◆ThecosineofangleA=thelengthoftheadjacentsidedividedbythelengthofthehypotenuse
a-level
Fromourship-mastexamplebefore,therelationshipbetweenanangleanditstangentcanbedeterminedfromitsgraph,shownbelow.Thegraphsofsineandcosineareincludedaswell.
▎下為三張三角函數(shù)公式表:
a-level數(shù)學(xué)
本章來源:Alevel知識點
課程類別:alevel課程選擇
本章標(biāo)題:a-level數(shù)學(xué)三角函數(shù)知識點學(xué)習(xí)與介紹
文本地址:http://iemv.cn/article_query/id/838
了解更多:a-level | a-level數(shù)學(xué) | 三角函數(shù) | a-level知識點 | a-level學(xué)習(xí) | a-level介紹 |
版權(quán)所有 轉(zhuǎn)載時請您以鏈接形式注明來源!