性猛交╳xxx乱大交,午夜精品久久久久久99热,少妇人妻好深太紧了,无码任你躁久久久久久久

a-level數(shù)學(xué)三角函數(shù)知識點學(xué)習(xí)與介紹

本文出處:IB培訓(xùn) 發(fā)布時間:2020-07-29 14:41:05 字體大?。? A+ A-

 

  WhatisTrigonometry?


  本文為全英敘述,可以充分引領(lǐng)你了解三角函數(shù)的前世今生,來龍去脈。在本文結(jié)尾處,附上三張三角函數(shù)公式表,幫助你自如地應(yīng)付A-Level數(shù)學(xué)考試。


  Trigonometryisabranchofmathematicsthatstudiesrelationshipsbetweenthesidesandanglesoftriangles.Trigonometryisfoundallthroughoutgeometry,aseverystraight-sidedshapemaybebrokenintoasacollectionoftriangles.


  Furtherstill,trigonometryhasastoundinglyintricaterelationshipstootherbranchesofmathematics,inparticularcomplexnumbers,infiniteseries,logarithmsandcalculus.


  Thewordtrigonometryisa16th-centuryLatinderivativefromtheGreekwordsfortriangle(trigōnon)andmeasure(metron).ThoughthefieldemergedinGreeceduringthethirdcenturyB.C.,someofthemostimportantcontributions(suchasthesinefunction)camefromIndiainthefifthcenturyA.D.


  BecauseearlytrigonometricworksofAncientGreecehavebeenlost,itisnotknownwhetherIndianscholarsdevelopedtrigonometryindependentlyorafterGreekinfluence.AccordingtoVictorKatzin“AHistoryofMathematics3rdEdition)”(Pearson,2008),trigonometrydevelopedprimarilyfromtheneedsofGreekandIndianastronomers.


  Anexample:Heightofasailboatmast


  Supposeyouneedtoknowtheheightofasailboatmast,butareunabletoclimbittomeasure.Ifthemastisperpendiculartothedeckandtopofthemastisriggedtothedeck,thenthemast,deckandriggingropeformarighttriangle.


  Ifweknowhowfartheropeisriggedfromthemast,andtheslantatwhichtheropemeetsthedeck,thenallweneedtodeterminethemast’sheightistrigonometry.


  Forthisdemonstration,weneedtoexamineacouplewaysofdescribing“slant.”Firstisslope,whichisaratiothatcompareshowmanyunitsalineincreasesvertically(itsrise)comparedtohowmanyunitsitincreaseshorizontally(itsrun).Slopeisthereforecalculatedasrisedividedbyrun.


  Supposewemeasuretheriggingpointas30feet(9.1meters)fromthebaseofthemast(therun).Bymultiplyingtherunbytheslope,wewouldgettherise—themastheight.Unfortunately,wedon’tknowtheslope.Wecan,however,findtheangleoftheriggingrope,anduseittofindtheslope.


  Anangleissomeportionofafullcircle,whichisdefinedashaving360degrees.Thisiseasilymeasuredwithaprotractor.Let’ssupposetheanglebetweentheriggingropeandthedeckis71/360ofacircle,or71degrees.


  Wewanttheslope,butallwehaveistheangle.Whatweneedisarelationshipthatrelatesthetwo.Thisrelationshipisknownasthe“tangentfunction,”writtenastan(x).Thetangentofananglegivesitsslope.Forourdemo,theequationis:tan(71°)=2.90.(We'llexplainhowwegotthatanswerlater.)


  Thismeanstheslopeofourriggingropeis2.90.Sincetheriggingpointis30feetfromthebaseofthemast,themastmustbe2.90×30feet,or87feettall.(Itworksthesameinthemetricsystem:2.90x9.1meters=26.4meters.)


  ▎Sine,cosineandtangent.


  Dependingonwhatisknownaboutvarioussidelengthsandanglesofarighttriangle,therearetwoothertrigonometricfunctionsthatmaybemoreuseful:the“sinefunction”writtenassin(x),andthe“cosinefunction”writtenascos(x).


  Beforeweexplainthosefunctions,someadditionalterminologyisneeded.Sidesandanglesthattoucharedescribedasadjacent.Everysidehastwoadjacentangles.Sidesandanglesthatdon’ttoucharedescribedasopposite.Forarighttriangle,thesideoppositetotherightangleiscalledthehypotenuse(fromGreekfor“stretchingunder”).Thetworemainingsidesarecalledlegs.


  Usuallyweareinterested(asintheexampleabove)inanangleotherthantherightangle.Whatwecalled“rise”intheaboveexampleistakenaslengthoftheoppositelegtotheangleofinterest;likewise,the“run”istakenasthelengthoftheadjacentleg.Whenappliedtoananglemeasure,thethreetrigonometricfunctionsproducethevariouscombinationsofratiosofsidelengths.


  ▎Inotherwords:


  ◆ThetangentofangleA=thelengthoftheoppositesidedividedbythelengthoftheadjacentside


  ◆ThesineofangleA=thelengthoftheoppositesidedividedbythelengthofthehypotenuse


  ◆ThecosineofangleA=thelengthoftheadjacentsidedividedbythelengthofthehypotenuse


a-level

a-level


  Fromourship-mastexamplebefore,therelationshipbetweenanangleanditstangentcanbedeterminedfromitsgraph,shownbelow.Thegraphsofsineandcosineareincludedaswell.


  ▎下為三張三角函數(shù)公式表:


  

a-level數(shù)學(xué)

a-level數(shù)學(xué)


本章來源:Alevel知識點

課程類別:alevel課程選擇

本章標(biāo)題:a-level數(shù)學(xué)三角函數(shù)知識點學(xué)習(xí)與介紹

文本地址:http://iemv.cn/article_query/id/838

了解更多:a-level | a-level數(shù)學(xué) | 三角函數(shù) | a-level知識點 | a-level學(xué)習(xí) | a-level介紹 |

版權(quán)所有 轉(zhuǎn)載時請您以鏈接形式注明來源!